b-Hydroxybutyric Acid

Optimal Result: 3.2 - 116.4 nmol/mg Creatinine.

b-hydroxybutyrate is one of the ketone bodies. 

The term ketone body describes any of 3 molecules: acetoacetate, b-hydroxybutyrate, or acetone. Acetoacetate is produced by acetyl-CoA metabolism, b-hydroxybutyrate is the result of acetoacetate reduction, and acetone is produced by the spontaneous decarboxylation of acetoacetate.

Ketone bodies are fundamental for metabolic homeostasis during periods of prolonged starvation. The brain cannot use fatty acids for energy production and usually depends on glucose to meet its metabolic needs. In cases of fasting or starvation, ketone bodies become a major fuel for brain cells, sparing amino acids from being catabolized to gluconeogenesis precursors to be used to supply the brain with energy. After prolonged  starvation, ketone bodies can provide as much as two thirds of the brain's energy needs.

Ketone bodies are strong organic acids that fully dissociate in blood. When ketone body production becomes uncontrollable, the buffering systems are saturated, and blood pH drops; this is a condition known as ketoacidosis.

The two common clinical scenarios for ketoacidosis are diabetic ketoacidosis and alcoholic ketoacidosis.

Diabetic ketoacidosis

The most clinically relevant application of b-hydroxybutyrate determination involves the diagnosis, management, and monitoring of diabetic ketoacidosis. During states of insulin deficiency, lipolysis at the adipose tissue (stimulated by insulin deficiency) provides a huge fatty acid load to the liver. Fatty acids are initially metabolized to acetyl-coenzyme A that cannot enter the citric acid cycle in the mitochondria due to oxaloacetate deficiency. Thus, acetyl-coenzyme A is diverted to ketone body production through the activity of several enzymes, producing acetoacetate. Acetoacetate is then reduced to 3-b-hydroxybutyrate by 3-b-hydroxybutyrate dehydrogenase.

The ratio of acetoacetate to 3-b-hydroxybutyrate depends on the redox status in the liver mitochondria (ie, the NAD+/NADH ratio). Under normal circumstances, the b-hydroxybutyrate to acetoacetate ratio is around 1; however, in diabetic ketoacidosis, this may increase to 7-10. Acetone is produced by the spontaneous decarboxylation of acetoacetate.

Traditionally, the diagnosis of diabetic ketoacidosis was based on the detection of ketones in urine using the Legal reaction, during which acetoacetate reacts in the presence of alkali with nitroprusside to produce a purple-colored complex on a test strip. However, this method has significant drawbacks. It is semiquantitative and not equally sensitive for urine and blood.

Moreover, not all the patients with diabetic ketoacidosis are able to provide a urine sample upon presentation, and ketones in urine are not a precise estimation of blood ketones. Most importantly, the most abundant ketone body during diabetic ketoacidosis is b-hydroxybutyrate, with a concentration 3-10 times higher of that of acetoacetate. As diabetic ketoacidosis is treated, serum b-hydroxybutyrate is transformed to acetoacetate due to the correction of the mitochondrial redox status, elevating urine acetoacetate levels and giving the false impression that the patient has not responded to treatment.

Lastly, urine ketone strips can give false positive results in patients receiving drugs with sulfhydryl groups and false-negative results when they have been exposed to air for a long period of time or when the urine is acidic. These disadvantages necessitate the evolution of a more reliable method for the diagnosis and management of diabetic ketoacidosis.

Alcoholic ketoacidosis

This is the second most common cause of ketoacidosis, although significantly less common than diabetic ketoacidosis. In most cases, patients report significant alcohol consumption accompanied by fasting. From a biochemical point of view, ethanol is metabolized to acetoacetate and then acetate, producing significant amounts of NADH. In order to regenerate NAD+, pyruvate is metabolized to lactate and oxaloacetate is consumed to produce malate, depleting gluconeogenesis precursors. During starvation, insulin levels are extremely low and facilitate acyl-CoA entry into mitochondria, producing significant amounts of acetyl-CoA that cannot be metabolized in the Krebs cycle and is diverted towards ketone body synthesis.

In alcoholic ketoacidosis, the b-hydroxybutyrate to acetoacetate ratio is extremely high and b-hydroxybutyrate levels may be useful in the diagnosis and management of alcoholic ketoacidosis. However, no studies have been performed to actually compare b-hydroxybutyrate (serum or blood) with the traditional diagnostic parameters for alcoholic ketoacidosis and thus no recommendations can be made in favor or against its use in this setting.

What does it mean if your b-Hydroxybutyric Acid result is too high?

Elevated serum b-hydroxybutyrate levels can be observed in various conditions associated with metabolic substrate use disorders, insulin deficiency, and altered redox status, including the following:

→ Diabetic ketoacidosis: Ketone body production is stimulated by dehydration and insulin deficiency. Levels are usually more than 3 mmol/L.

→ Alcoholic ketoacidosis: Ketone body production is stimulated by altered redox status within the liver mitochondria.

→ High fat diet

→ Steroid or growth hormone deficiency

→ Salicylate poisoning

→ Fasting and starvation: Serum b-hydroxybutyrate levels are increased after approximately 3 days, rising to a plateau after 4 weeks of food deprivation.

→ Lactation: Ketone body production is stimulated by the high-fat content of milk.

→ Ketogenic diets: These diets are popular for the control of refractory seizures and body weight in obese individuals.

→ Glycogen-storage diseases and other metabolic disorders

A prospective study by Flores-Guerrero et al indicated that high plasma levels of b-hydroxybutyrate signal an increased risk of heart failure with reduced ejection fraction (HFrEF), especially in females. In terms of incident HF (which in these results was primarily due to HFrEF), the hazard ratio per one standard deviation increase in the b-hydroxybutyrate concentration was 1.40. More specifically, in women, one standard deviation was associated with a hazard ratio for HFrEF of 1.73, compared with 1.14 in men.


Flores-Guerrero JL, Westenbrink BD, Connelly MA, Otvos JD, Groothof D, Shalaurova I, Garcia E, Navis G, de Boer RA, Bakker SJL, Dullaart RPF. Association of beta-hydroxybutyrate with development of heart failure: Sex differences in a Dutch population cohort. Eur J Clin Invest. 2021 May;51(5):e13468. doi: 10.1111/eci.13468. Epub 2020 Dec 18. PMID: 33616911; PMCID: PMC8244065.

What does it mean if your b-Hydroxybutyric Acid result is too low?

β-hydroxybutyric acid is a ketone and a byproduct of fatty acid metabolism and makes up ~70% of ketones produced in liver mitochondria.

Low levels of 3-Hydroxybutyric acid (=beta-hydroxybutyrate) may occur if there are low levels of precursors (fat, amino acids), if there are nutritional enzyme inhibitions, or if a low-activity enzyme variant is inherited. Ketone bodies are derived from fatty acids, levels may be lower on high carbohydrate diets. Ketogenesis occurs within the liver mitochondria, which are sensitive to oxidative stress and environmental toxins. Liver disorders may impair ketone synthesis and abnormally low levels of ketone bodies may impair liver functions.

Low levels of malate or orotate may also impair liver function.

→ Consider supporting synthesis pathways with vitamin B3 and phosphatidyl choline. Increasing healthy dietary fats, digestion and absorption may improve beta-hydroxybutyrate levels.

→ Review Citric Acid Cycle Metabolites and consider nutritional support for mitochondria.

Frequently asked questions

Unlock Your Health Journey with Healthmatters.io! Ever wished for a one-stop digital health haven for all your lab tests? Look no further! Healthmatters.io is your personalized health dashboard, bringing together test reports from any lab. Say goodbye to scattered results—organize and centralize your lab data effortlessly. Dive into the details of each biomarker and gain insights into the meaning behind your medical test data.

Join the community of thousands who've transformed the way they understand their lab results. Experience the joy of having all your lab data neatly organized, regardless of where or when the tests were done.

For our professional users, Healthmatters.io is a game-changer. Revel in the intuitive tools that not only streamline analysis but also save valuable time when delving into your client's lab report history. It's not just a dashboard; it's your gateway to a smarter, more informed health journey!

Healthmatters.io personal account provides in-depth research on 4000+ biomarkers, including information and suggestions for test panels such as, but not limited to:

  • The GI Effects® Comprehensive Stool Profile,
  • GI-MAP,
  • The NutrEval FMV®,
  • The ION Profile,
  • Amino Acids Profile,
  • Dried Urine Test for Comprehensive Hormones (DUTCH),
  • Organic Acids Test,
  • Organix Comprehensive Profile,
  • Toxic Metals,
  • Complete Blood Count (CBC),
  • Metabolic panel,
  • Thyroid panel,
  • Lipid Panel,
  • Urinalysis,
  • And many, many more.

You can combine all test reports inside your Healthmatters account and keep them in one place. It gives you an excellent overview of all your health data. Once you retest, you can add new results and compare them.

If you are still determining whether Healthmatters support your lab results, the rule is that if you can test it, you can upload it to Healthmatters.

While we do talk about popular labs, we welcome reports from lots of other places too. It's as simple as this: if you can get a test done, you can upload it to Healthmatters. We can interpret results from any lab out there. If laboratories can analyze it, we can interpret it.

Still on the hunt for a specific biomarker? Just tell us, and we'll add it to our database. Anything from blood, urine, saliva, or stool can be uploaded, understood, and tracked with your Healthmatters account!

There are two ways to add your test reports to your healthmatters.io account. One option is to input the data using the data entry forms. The other method is to utilize our "Data entry service."

Our data entry forms offer an easy, fast, and free way for you to input the reports yourself. Self-entry allows you to add an unlimited number of reports at no cost. We make the self-entry process user-friendly, providing dozens of templates that pre-populate the most popular laboratory panels and offering instant feedback on entered values.

For those who prefer assistance, we offer a "Data entry service" to help you input your data. Simply attach an image or file of your lab test results, and a qualified team member from our data entry team will add the results for you. We support various file types, including PDFs, JPGs, or Excel. This service is particularly useful if you have many reports to upload or if you're too busy to handle the data entry yourself.

Our special data entry service makes it easy to add your results to your private dashboard. Just attach an image or a file of your lab test results, and our skilled data entry team will do the work for you. It's all done by humans, ensuring that your data is entered accurately and with personal care for each client.

Depending on your account, the data entry service can be included for free or come at an additional cost of $15 per report.

For users on the Complete monthly plan, the first report is entered free of charge, and each additional report incurs a fee of $15.

Unlimited account holders enjoy the entry of ten reports without charge. Subsequent reports are subject to a $15 fee per report.

Additionally, users on the Complete plan can upgrade to a yearly subscription from the account settings. The annual subscription includes a data entry service for five reports.

The Unlimited plan is a one-time purchase for $250, and it covers your account for a lifetime with no additional payments.

For the Complete plan, the cost is $15 per month. You have the flexibility to cancel it anytime through your account settings, ensuring no further payments. To avoid charges, remember to cancel at least a day before the renewal date. Once canceled, the subscription remains active until the end of the current billing cycle.

Additionally, you can upgrade to the yearly Advanced plan from within your account. The annual cost is $79, and it comes with a data entry service for five reports.

You can always upgrade to a lifetime version with a prorated price from a monthly or yearly subscription.

Simply log in and navigate to your account settings to cancel your subscription. Scroll down to locate the 'Cancel' button at the bottom of the page. Ensure you cancel at least one day before the renewal date to prevent any charges. Once cancellation is requested, the subscription remains active until the conclusion of the current billing cycle.

Unlocking the insights from your lab tests has never been this intuitive! We've crafted multiple ways for you to navigate your data, whether you're glancing at a single report or delving into a treasure trove of testing data.

1. Graph View:

Dive into a visual journey with our biomarker graphs, showcasing over 40 data points. Combining years of results unveils trends, empowering you to make informed decisions. Our visualization tools make it a breeze to compare and understand changes over time, even if your results are from different labs. A search function and filters simplify the exploration of extensive data, allowing you to focus on what needs attention.

2. All Tests View

Get a quick grasp of your test reports in minutes! Explore neatly organized reports on a timeline, highlighting crucial details like dates, critical results, and lab/panel names. Each report opens up to reveal in-depth descriptions and additional recommendations for each biomarker. The history of previous results is just a click away, and you can download a comprehensive report for deeper insights. Color-coded and user-friendly, it's designed for easy reading, understanding, and navigation.

3. Table View:

For a holistic view of all biomarkers side by side, our table view is your go-to. Results are neatly displayed in a categorized and dated table, ideal for those with an extensive test history. Utilize sorting, filters, and color-coding to enhance your analysis and gain extra insights.

Experience the power of clear, organized data visualization with Healthmatters.io — your key to understanding and taking charge of your health journey!

Yes, you can download information from your account. We can compile your labs into a CSV file. To download all your labs, you can go to Account Settings, and at the bottom of the page, you will find a link to download your information.

Yes, you can print your report. To do so, navigate to "All tests" and open the report you wish to print. You'll find a print button in the right corner of the report. Click on it, and your browser's print window will open. If you prefer to print in a bigger typeface, adjust the scale using the print window settings.

A personal account is all about keeping your own lab test results in check. It's just for you and your personal use.

The professional or business account is designed for health professionals who wish to track and organize their clients' laboratory results.

Use promo code to save 10% off any plan.

We implement proven measures to keep your data safe.

At HealthMatters, we're committed to maintaining the security and confidentiality of your personal information. We've put industry-leading security standards in place to help protect against the loss, misuse, or alteration of the information under our control. We use procedural, physical, and electronic security methods designed to prevent unauthorized people from getting access to this information. Our internal code of conduct adds additional privacy protection. All data is backed up multiple times a day and encrypted using SSL certificates. See our Privacy Policy for more details.