Explore our database of over 4000 laboratory markers.
Search and Understand 4000+ Biomarkers
Optimal range: 30.1 - 101.3 umol/L
Ornithine is a urea cycle metabolite.
Ornithine can stimulate the release of growth hormone. Growth hormone is necessary for tissue repair and growth. Growth hormone is often low in patients with fibromyalgia.
Optimal range: 0 - 26.8 nmol/mg Creatinine
LEARN MOREOptimal range: 4.38 - 15.42 Units
Ornithine is an intermediate nonprotein-forming amino acid of the urea cycle.
Arginine is converted to ornithine via the arginase enzyme, with urea as a byproduct. Ornithine combined with carbamoyl phosphate is then converted into citrulline via the ornithine transcarbamylase (OTC) enzyme. The contribution of carbamoyl phosphate results from the metabolism of ammonia by the enzyme carbamoyl phosphate synthase, and if this magnesium-dependent process is impaired, ammonia buildup, or hyperammonemia can occur.
Ornithine can also form polyamines including putrescine via the ornithine decarboxylase (ODC) enzyme, which requires pyridoxal-5-phosphate (vitamin B6) as a cofactor.
Putrescine and other polyamines are crucial to the growth and proliferation of cells.
Optimal range: 3 - 17 mmol/g creatinine
Ornithine is an intermediate nonprotein-forming amino acid of the urea cycle. Arginine is converted to ornithine via the arginase enzyme, with urea as a byproduct. Ornithine combined with carbamoyl phosphate is then converted into citrulline via the ornithine transcarbamylase (OTC) enzyme. The contribution of carbamoyl phosphate results from the metabolism of ammonia by the enzyme carbamoyl phosphate synthase, and if this magnesium-dependent process is impaired, ammonia buildup, or hyperammonemia can occur.
Optimal range: 28 - 117 µmol/L , 2.80 - 11.70 µmol/dL
Ornithine is a urea cycle metabolite.
Ornithine can stimulate the release of growth hormone. Growth hormone is necessary for tissue repair and growth. Growth hormone is often low in patients with fibromyalgia.
Optimal range: 0 - 26.8 nmol/mg Creatinine
→ It is a key substrate for the synthesis of proline, polyamines, and citrulline.
→ Higher ornithine blood levels were associated with lower breast cancer risk; also found higher in those with Alzheimer’s and Parkinson’s disease.
→ Ornithine supplements have been utilized for NH3 detoxification in liver disease.
Optimal range: 39 - 132.1 nmol/ML
LEARN MOREOptimal range: 3 - 17 micromol/g creatinine
Ornithine is a urea cycle metabolite.
Ornithine can stimulate the release of growth hormone. Growth hormone is necessary for tissue repair and growth. Growth hormone is often low in patients with fibromyalgia.
Optimal range: 0 - 1.01 mcg/mg creatinine
Orotate is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0.33 - 1.01 mmol/mol creatinine
Orotate is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0 - 1.04 ug/mg creatinine
Orotate is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0 - 2 mmol/mol creatinine
LEARN MOREOptimal range: 0.06 - 0.54 mmol/mol creatinine
Orotic Acid is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0 - 0.88 mmol/mol creatinine
Orotic Acid is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0 - 0.46 mmol/mol creatinine
Orotic Acid is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0.04 - 0.8 mmol/mol creatinine
LEARN MOREOptimal range: 1.2 - 13.1 nmol/mg Creatinine
Orotic Acid is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.
Optimal range: 0.33 - 1.01 mmol/mol creatinine
Orotic Acid is an organic acid which serves as an intermediate in nucleotide synthesis and is linked to arginine metabolism as a urea cycle marker for nitrogen balance.
It is formed from aspartic acid and carbamoyl phosphate. Carbamoyl phosphate plays an important role in the body because it brings nitrogen into the urea cycle for detoxification and disposal. Carbamoyl phosphate enters the urea cycle to react with ornithine to form citrulline. When ammonia levels significantly increase or the liver’s capacity for detoxifying ammonia into urea decreases, carbamoyl phosphate leaves the mitochondria and instead enters the pyrimidine pathway. This stimulates orotic acid biosynthesis and subsequent urinary excretion. Orotic acid can also be found in the diet. The richest dietary sources include cow’s milk and dairy products.
Optimal range: 0.33 - 1.01 mmol/mol creatinine
Orotic Acid is a sensitive marker of your liver’s capacity to convert toxic ammonia to non-toxic urea that you can excrete. That capacity can be increased by additional arginine. Ammonia toxicity can also be reduced by supplementation with α-ketoglutarate, magnesium, aspartic acid, and glutamic acid. Ammonia impairs brain function, causing difficulty with thinking, fatigue, headaches, and increased food sensitivities.