Explore our database of over 4000 laboratory markers.
Search and Understand 4000+ Biomarkers
Reference range: Negative, Positive
Salmonella are facultative anaerobic bacteria in the family of Enterobacteriaceae. There are two species of Salmonella, Salmonella enterica and Salmonella bongori that include over 2,600 different serotypes. The majority of the pathogenic serotypes of Salmonella that affect humans are within the species of Salmonella enterica (S. enterica). Worldwide, Salmonella spp. causes an estimated 93.8 million cases of gastroenteritis each year.
Optimal range: 4 - 20 Ratio
The SAM/SAH ratio is commonly referred to as the “Methylation Index” in the literature and has well- documented clinical associations.
Global methylation is dependent on two key factors: adequate SAM supply and SAH removal.
The SAM/SAH ratio has been proposed to indicate the likelihood of hyper- or hypo-methylation.
Overall, the SAM/SAH ratio is under tight homeostatic control. SAM levels remain fairly stable due to denovo synthesis and feedback mechanisms. Given this, alterations in the methylation index are more likely a result of SAH fluctuations.
Reference range: Not Detected, Detected
LEARN MOREOptimal range: 0 - 210 Units
Sapovirus I, detected in a gut test, is a significant indicator of gastrointestinal health, particularly in the context of viral infections. Sapovirus, a member of the Caliciviridae family, is known for causing acute gastroenteritis, primarily in children and infants, but it can also affect adults. These viruses are typically transmitted through the fecal-oral route, often due to contaminated food or water, or close contact with infected individuals. The presence of Sapovirus I in a gut test indicates a recent or ongoing infection, which can be responsible for symptoms such as diarrhea, vomiting, abdominal pain, and sometimes fever and dehydration.
Optimal range: 0 - 80 mmol/mol creatinine
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine. It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess.
Optimal range: 0 - 118.1 nmol/mg Creatinine
LEARN MOREOptimal range: 3670 - 6743 nanomol/L
Sarcosine is an amino acid made when SAM is conjugated with glycine by the glycine-N- methyltransferase (GNMT) enzyme. It can also be made by catabolism of DMG. There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats. [L]
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. [L]
In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess. Disposal of excess SAM is seen in excess methyl donor supplementation, or SAM elevation due to adiposity/ obesity. Some clinicians use sarcosine elevation as a marker of ‘excess methyl supplementation’ or ‘over- methylation.’ Currently, there is no literature to support this hypothesis, but rather it is based on physiology. [L]
Optimal range: 0 - 7 qM/g creatinine
LEARN MOREOptimal range: 0 - 4 umol/L
Sarcosine is also known as N-methylglycine. It is an intermediate and byproduct in the glycine synthesis and degradation. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine.
Optimal range: 0 - 0.15 Units
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine. It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess.
Optimal range: 0 - 1 micromol/g creatinine
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine.
It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents.
In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess. Some clinicians use sarcosine elevation as a marker of ‘excess methyl supplementation’ or ‘over-methylation.’ Currently, there is no literature to support this hypothesis, but rather it is based on physiology.
Optimal range: 0 - 4 umol/L
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine. It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess.
Optimal range: 0.5 - 27.3 umol/g Cr
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine. It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess.
Optimal range: 0 - 0.15 qmol/dL
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine.
It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents.
In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess. Some clinicians use sarcosine elevation as a marker of ‘excess methyl supplementation’ or ‘over-methylation.’ Currently, there is no literature to support this hypothesis, but rather it is based on physiology.
Optimal range: 0 - 10 qmol/24 hours
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine. It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents. In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess.
Optimal range: 3.9 - 9.7 umol/L
Sarcosine is an amino acid made within the methylation cycle when S-adenosylmethionine (SAM) is conjugated with glycine.
It can also be made by catabolism of dimethylglycine (DMG).
There are many dietary sources of sarcosine including eggs, legumes, nuts, and meats.
Sarcosine is also available as an over-the-counter supplement, and it is widely used in cosmetic formulations (toothpaste, creams, and soaps) and detergents.
In the methylation cycle, sarcosine is created by the GNMT enzyme, which functions to control SAM excess. Some clinicians use sarcosine elevation as a marker of ‘excess methyl supplementation’ or ‘over-methylation.’ Currently, there is no literature to support this hypothesis, but rather it is based on physiology.
Optimal range: 0 - 10.4 µmol/L , 0.00 - 1.04 µmol/dL
Sarcosine is also known as N-methylglycine. It is an intermediate and byproduct in the glycine synthesis and degradation. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine.