Adipic Acid, together with Suberate and Ethylmalonate are all functional markers for deficiency of carnitine.
Carnitine is needed to move fatty acids into the mitochondria where they are converted to energy using vitamin B2.
If carnitine is sufficient long-chain fatty acids go through beta-oxidation in the mitochondria.
When insufficient levels of carnitine or vitamin B2 slow down this process, other parts of the cellular machinery take over and make adipic acid and suberate.
A similar block in another pathway causes high ethylmalonate. Since most of our bodies’ energy is produced from the burning of fatty acids, our muscles and brain suffer when this cellular energy pathway is blocked. Anything that interferes with the normal fatty acid oxidation may reveal high levels of these metabolites.
Low levels of adipate can occur if there is insufficient dietary fat or digestive fat malabsorption. While adipate can be synthesized, it is primarily produced by the gastrointestinal microbiome from dietary fats and absorbed from the gastrointestinal system. Adipate and suberate levels may also be low if there are inherited low activity enzyme variants present in the synthesis pathway. An insufficiency of zinc or vitamin B3 may inhibit omega oxidation pathways and decrease adipate levels. Adipate can be used to synthesize succinate and support the Citric Acid Cycle.
- Consider supporting adipate synthesis with vitamins B2, B3, CoQ10 (ubiquinone), L-carnitine, magnesium, and zinc.
- Adipate may be combined with malonate and converted into succinate to drive the CAC forward. If adipate is low, but succinate is adequate and alpha-ketoglutarate is elevated, conversion to succinate may cause lower adipate levels. Consider increasing healthy fats and supporting fat digestion with digestive enzymes.
- Celiac disease or inflammatory bowel syndrome (IBD) may impair digestion and absorption of fats, proteins, minerals, and vitamins. Fat malabsorption can present with gastrointestinal bloating and cramping with pale or greasy stools.
- Consider an evaluation of gastrointestinal function to determine the need for digestive supports and improved fat assimilation.
Understand and improve your laboratory results with our health dashboard.
Upload your lab reports and get your interpretation today.
Our technology helps to understand, combine, track, organize, and act on your medical lab test results.
High levels of adipate can occur if there is a high dietary fat load, during fasting, or if there are inherited low-activity enzyme variants in the beta-oxidation pathway. Metabolic syndrome or type II diabetes may increase adipate and suberate levels. An L-carnitine deficiency can inhibit normal beta-oxidation and promote omega-oxidation, increasing adipate and suberate levels. Adipate is converted into succinate and other products in the liver. Dicarboxylic acids (cis- aconitate, isocitrate, succinate, malate, suberate, and adipate) may be excreted in high amounts due to increased mobilization of fatty acids, beta-oxidation defects, increased gut permeability or fasting. In some autistic individuals, there is an inverse relationship between adipate levels and social deficit/communication scores and a direct association with adipate levels and total ASD symptom scores. Adipate levels may increase if liver disorders are present. Exposure to phthalates or butane can also increase adipate levels.
- Consider supporting the beta-oxidation pathway with vitamins B2, B3, iron (if deficient), L-carnitine, sulforaphane and a lower-fat diet. Individuals with beta-oxidation defects may have trouble producing enough ketone bodies to successfully accommodate fasting or a “keto” or high-fat diet.
- Beta-oxidation defects may also increase suberate, ethylmalonate, and methylsuccinate
- Omega oxidation products can be converted into products that support the CAC. Levels of dicarboxylic acids (cis-aconitate, isocitrate, succinate, malate, suberate, and adipate) can increase when this occurs.
- Adipate is primarily produced by the gastrointestinal microbiome from dietary fats. A high dietary fat load may increase levels of adipate, suberate, and beta-hydroxybutyrate.
- Type II diabetes or metabolic syndrome can increase not only adipate but suberate, alpha- hydroxybutyrate, lactate, and pyruvate.
- Liver disorders:
- Some liver disorders, or later stage liver disease, may result in lactic acidosis and increase the levels of lactate, pyruvate, the Fatty Oxidation and Ketone analytes, and other organic acids. General symptoms of acidosis in infants include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures.
- Other liver disorders or early-stage liver disease may instead increase the levels of adipate and suberate, while blocking the synthesis of ketones such as beta-hydroxybutyrate. Levels of alpha-keto-isovalerate, hydroxymethylglutarate, pyroglutamate, benzoate, and 3- indoleacetate may be elevated, while vanilmandelate, 5-hydroxyindolacetate, and orotate may be lower than expected.
- Butane exposures may occur due to deliberate inhalation (“huffing”) or from industrial, aerosol propellant or petroleum exposures. Butane “huffing” may result in neurological and cardiovascular symptoms.
- Phthalate exposures can inhibit beta-oxidation and increase levels of adipate, suberate, ethylmalonate, and methylsuccinate.
Interpret Your Lab Results
Upload your lab report, and we'll interpret and provide you with recommendations today.
Get StartedMonthly plan
Annual plan
Own it for life
Our exclusive data entry service is a convenient way to get your results into your private dashboard. Simply attach an image or a file of your lab test results, and one of our qualified data entry team members will add the results for you. We support all sorts of files, whether PDFs, JPGs, or Excel. This service is excellent whether you have a lot of reports to upload or are too busy to do the data entry yourself.
We strive to make the data entry process easy for you. Whether by offering dozens of templates to choose from that pre-populate the most popular laboratory panels or by giving you instant feedback on the entered values. Our data entry forms are an easy, fast, and convenient way to enter the reports yourself. There is no limit on how many lab reports you can upload.
$15 /month
billed every month
Most popular
Data entry included
$79 /year
$6.60/month billed annually
Data entry included
$250 /once
own it for life
Are You a Health Professional?
Get started with our professional plan
Welcome to Healthmatters Pro.
Save time on interpreting lab results with the largest database of biomarkers online. In-depth research on any test at your fingertips, all stored and tracked in one place. Learn more
Pro Monthly Plus
for health professionals
$75 per month
At HealthMatters, we're committed to maintaining the security and confidentiality of your personal information. We've put industry-leading security standards in place to help protect against the loss, misuse, or alteration of the information under our control. We use procedural, physical, and electronic security methods designed to prevent unauthorized people from getting access to this information. Our internal code of conduct adds additional privacy protection. All data is backed up multiple times a day and encrypted using SSL certificates. See our Privacy Policy for more details.
2-Hydroxybutyric acid, 2-Hydroxyhippuric acid, 2-Hydroxyisocaproic acid, 2-Hydroxyisovaleric acid, 2-Hydroxyphenylacetic acid, 2-Oxo-4-methiolbutyric acid, 2-Oxoglutaric acid, 2-Oxoisocaproic acid, 2-Oxoisovaleric, 3-Hydroxy-3-methylglutaric, 3-Hydroxybutyric acid, 3-Hydroxyglutaric acid, 3-Indoleacetic acid (IAA), 3-Methyl-2-oxovaleric acid, 3-Methylglutaconic, 3-Methylglutaric acid, 3-Oxoglutaric acid, 4-Cresol, 4-Hydroxybenzoic acid, 4-Hydroxybutyric acid, 4-Hydroxyhippuric acid, 4-Hydroxyphenylacetic acid, 4-Hydroxyphenyllactic acid, 5-Hydroxyindoleacetic acid (5-HIAA), 5-Hydroxymethyl-furoic acid, Acetoacetic acid, Aconitic acid, Adipic acid, Arabinose, Ascorbic acid (Vitamin C), Carboxycitric acid, Citramalic acid, Citric acid, Creatinine, DHPPA (dihydroxyphenylpropionic acid), Dihydroxyphenylacetic acid (DOPAC), Ethylmalonic acid, Fumaric acid, Furan-2,5-dicarboxylic acid, Furancarbonylglycine, GABA, Glutaric acid (Vitamin B2), Glyceric acid, Glycolic acid, Hippuric acid, Homogentisic acid, Homovanillic acid (HVA), HPHPA (3-(3-hydroxyphenyl)-3-hydroxypropionic acid), HVA/DOPAC, HVA/DOPAC Ratio, Kynurenic acid, Lactic acid, Malic acid, Malonic acid, Mandelic acid, Methylcitric acid (Vitamin H), Methylmalonic acid (Vitamin B12), Methylsuccinic acid, N-Acetylaspartic acid, N-Acetylcysteine acid, Orotic acid, Oxalic acid, Pantothenic acid (Vitamin B5), Phenyllactic acid, Phenylpyruvic acid, Phosphoric acid, Pyridoxic acid (Vitamin B6), Pyroglutamic acid, Pyruvic acid, Quinolinic acid, Quinolinic acid/5-HIAA, Sebacic acid, Suberic acid, Succinic acid, Tartaric acid, Thymine, Tricarballyic acid, Uracil