Fumaric acid uses the fumarase enzyme to become malic acid. Malate dehydrogenase catalyzes the conversion of malic acid into oxaloacetate. Two forms of this enzyme exist in eukaryotes. One operates within the mitochondria to contribute to the Citric Acid Cycle; the other is in the cytosol where it participates in the malate/ aspartate shuttle. Riboflavin is an important cofactor for this enzyme and overall mitochondrial energy production and cellular function. At the end of each Citric Acid Cycle, the four-carbon oxaloacetate has been regenerated, and the cycle continues.
References:
- Minarik P, Tomaskova N, Kollarova M, Antalik M. Malate dehydrogenases-structure and function. Gen Physiol Biophys. 2002;21(3):257-266.
- Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chemico-biol Interact. 2006;163(1-2):94-112.
- Kim D CJ, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslvasky L, et. al. PubChem 2019 update: improved access to chemical data. Nucleic Acids. 2019.
Understand and improve your laboratory results with our health dashboard.
Upload your lab reports and get your interpretation today.
Our technology helps to understand, combine, track, organize, and act on your medical lab test results.
High levels of malic acid can be seen if its dehydrogenation to oxaloacetic acid is reduced from lack of vitamin B3 as NAD. Malic acid also has many food sources, such as vegetables, as well as fruits like apples and pears. It is also an additive and preservative in beverages, throat lozenges, and syrups.
Increased urinary malate levels with:
Diet
- Excessive consumption of fruits and vegetables
- Food additives
- Magnesium malate supplements
Malate aspartate shuttle dysfunction
Medical disorders
- Inborn errors of metabolism (disorders are usually diagnosed in infancy)
- Kidney problems (uremia)
Pharmaceutical lithium
---------------------------
Elevated levels of malate may occur when there are nutritional enzyme inhibitions of the breakdown pathways, inherited low-activity enzymes are present, if there are high levels of precursors (fumarate), or if there are higher levels of its downstream products.
Levels may be high if there are problems with the malate-aspartate shuttle. Dicarboxylic acids (cis-aconitate, isocitrate, succinate, malate, suberate, and adipate) may be excreted in high amounts due to increased mobilization of fatty acids, beta-oxidation defects, increased gut permeability or fasting.
→ Malate can be broken down into several different compounds. Consider supporting malate metabolism with vitamin B3, magnesium and manganese (if deficient).
→ Fumarate is normally in equilibrium with malate. High malate levels due to low-activity enzyme variants in the enzyme fumarase have been associated with increased cancer risk and catecholamine-producing tumors such as paraganglioma, or pheochromocytoma.
→ The malate-aspartate shuttle helps feed electrons into the electron transport chain so that ATP can be produced. High levels of methylmalonate may inhibit shuttle activity. The shuttle may be inhibited if there are problems in the urea cycle or if there is insufficient dietary protein assimilation or aspartate amino acid synthesis. Liver disorders may impair aspartate synthesis.
Interpret Your Lab Results
Upload your lab report, and we'll interpret and provide you with recommendations today.
Get StartedMonthly plan
Annual plan
Own it for life
Our exclusive data entry service is a convenient way to get your results into your private dashboard. Simply attach an image or a file of your lab test results, and one of our qualified data entry team members will add the results for you. We support all sorts of files, whether PDFs, JPGs, or Excel. This service is excellent whether you have a lot of reports to upload or are too busy to do the data entry yourself.
We strive to make the data entry process easy for you. Whether by offering dozens of templates to choose from that pre-populate the most popular laboratory panels or by giving you instant feedback on the entered values. Our data entry forms are an easy, fast, and convenient way to enter the reports yourself. There is no limit on how many lab reports you can upload.
$15 /month
billed every month
Most popular
Data entry included
$79 /year
$6.60/month billed annually
Data entry included
$250 /once
own it for life
Are You a Health Professional?
Get started with our professional plan
Welcome to Healthmatters Pro.
Save time on interpreting lab results with the largest database of biomarkers online. In-depth research on any test at your fingertips, all stored and tracked in one place. Learn more
Pro Monthly Plus
for health professionals
$75 per month
At HealthMatters, we're committed to maintaining the security and confidentiality of your personal information. We've put industry-leading security standards in place to help protect against the loss, misuse, or alteration of the information under our control. We use procedural, physical, and electronic security methods designed to prevent unauthorized people from getting access to this information. Our internal code of conduct adds additional privacy protection. All data is backed up multiple times a day and encrypted using SSL certificates. See our Privacy Policy for more details.
2-Decenedioic Acid, 2-ET-3-OH-Propionic, 2-Hydroxyadipic, 2-Hydroxybutyric, 2-Hydroxyglutaric, 2-Hydroxyisocaproic, 2-Hydroxyisovaleric, 2-Methyl, 3-Hydroxybutyric, 2-Methylacetoacetic, 2-Methylbutrylglycine, 2-Methylglutaconic Acid, 2-Octenedioic acid, 2-Octenoic Acid, 2-OH-3ME-Valeric, 2-Oxo-3-methylvaleric, 2-OXO-Butyric Acid, 2-OXOADIPIC, 2-Oxoglutaric, 2-Oxoisocaproic, 2-Oxoisovaleric, 2OH-Phenylacetic Acid, 3-Hydroxyadipic, 3-Hydroxybutyric, 3-Hydroxyglutaric, 3-Hydroxyisobutyric, 3-Hydroxyisovaleric, 3-Hydroxypropionic, 3-Hydroxysebacic, 3-Hydroxyvaleric, 3-Methylcrotonylglycine, 3-Methylglutaconic, 3-Methylglutaric, 3-OH-3-Methylglutaric, 30H-ISOVALERIC ACID, 3OH-2-Methylvaleric Acid, 3OH-Dodecanedioic Acid, 3OH-Dodecanoic Acid, 4 HYDROXYCYCLOHEX- ANEACETIC, 4-Hydroxphenyllactic, 4-Hydroxybutyric, 4-Hydroxyphenylacetic, 4-Hydroxyphenylpyruvic, 4OH-Phenylpropionic Acid, 5-HIAA, 5-Oxoproline, 5OH-Hexanoic Acid, Acetoacetic, Aconitic, Ur, Adipic, Butyrylglycine, Citric, Crotonylglycine, Decadienedioic, Dodecanedioic, Ethylmalonic, Fumaric, Glutaconic, Glutaric, Glyceric Acid, Hexanoylglycine, Homogentisic, HOMOVANILLIC ACID, Isobutyrylglycine, Isocitric, Isovaleryglycine, Lactic, Lactic Acid, Malic, Malonic, Methylcitric, Methylmalonic, Methylsuccinic, Mevalonolactone, N ACETYLASPARTIC, N-AcetylTyrosine, N-Valerylglycine, Octanoic, Orotic, Phenylacetic, Phenyllactic, Phenylpropionylglycine, Phenylpyruvic, Propionylglycine, Pyruvic, Sebacic, Suberic, Suberylglycine, Succinic, Succinylacetone, Thymine, Tiglylglycine, Trans-Cinnamoylglycine, Uracil, VMA