Allo-Tetrahydrocortisol
What is cortisol?
Cortisol is a steroid hormone that regulates a wide range of processes throughout the body, including metabolism and the immune response. It also has a very important role in helping the body respond to stress.
Cortisol is made in the cortex of the adrenal glands and then released into the blood, which transports it all round the body. Almost every cell contains receptors for cortisol and so cortisol can have lots of different actions depending on which sort of cells it is acting upon. These effects include controlling the body’s blood sugar levels and thus regulating metabolism, acting as an anti-inflammatory, influencing memory formation, controlling salt and water balance, influencing blood pressure and helping development of the fetus. In many species cortisol is also responsible for triggering the processes involved in giving birth.
Bound cortisol versus free cortisol:
80-90% of cortisol is bound to cortisol-binding globulin (CBG); much like thyroid is bound to thyroid-binding globulin (TBG) and testosterone is bound to sex hormone-binding globulin (SHBG).
A very small percentage of cortisol is free and unbound, while the remaining is in transition.
Converted and metabolized cortisol:
The human body produces cortisol first, and then different glands have the ability to keep it as cortisol or convert it into cortisone, which is biologically inactive, through the enzyme 11-beta-hydroxysteroiddehydrogenase (11bHSD).
Cortisol is then metabolized into 5-alpha-Tetrahydrocortisol (5a-THF) and 5-beta-Tetrahydrocortisol (5b-THF) and cortisone is metabolized into 5-beta-Tetrahydrocortisone (5b-THE).
Total metabolized output:
Since all production and output originally started as cortisol, the cortisone metabolites are added to the cortisol metabolites when evaluating the “total metabolized cortisol”. It essentially reflects how much cortisol was made in the body and has been processed out through the liver and the kidney into the urine.
Interpretation of different types:
The amount of cortisol produced and the amount of free cortisol available can be very different in some scenarios. Measuring both allows for insight into the rate of cortisol clearance/metabolism.
Higher levels of metabolized cortisol (vs free):
For example, higher levels of metabolized cortisol (compared to free cortisol) are often seen in obesity where adipose tissue is likely pulling cortisol from its binding protein and allowing for metabolism and clearance. The adrenal gland has to keep up with this cortisol sequestering and excretion, so cortisol production is often quite high (as seen in the levels of metabolized cortisol) even though free cortisol does not correlate positively with adipose tissue or BMI. This insight is quite helpful for those looking to lose belly fat and suspect cortisol/stress is a major factor. These people are often misdiagnosed as having low cortisol production when only free cortisol is measured. Increased cortisol clearance may also be seen in hyperthyroidism and is suspected to be part of the chronic fatigue story as well.
In people with low thyroid, the opposite pattern is often seen. When the thyroid slows down or if there is peripheral hypothyroidism where free T3 cannot get into the cells, the clearance (or metabolism) of cortisol through the liver slows down. As a result, free cortisol starts to increase and may show up elevated in urine.
The metabolized cortisol and free cortisol markers are important to use both together and separately in order to tell a more detailed story. Metabolized cortisol answers the question of how much cortisol is being made in total and clearing through the liver. Whereas free-cortisol results tell us how much cortisol is free to bind to receptors and allows for assessment of the circadian rhythm. The metabolites of cortisol also give insight into the relative activity of 11b-HSD types I and II, which controls the activation and inactivation (to cortisone) of cortisol.
How is cortisol controlled in general?
Blood levels of cortisol vary dramatically, but generally are high in the morning when we wake up, and then fall throughout the day. This is called a diurnal rhythm. In people that work at night, this pattern is reversed, so the timing of cortisol release is clearly linked to daily activity patterns. In addition, in response to stress, extra cortisol is released to help the body to respond appropriately.
The secretion of cortisol is mainly controlled by three inter-communicating regions of the body, the hypothalamus in the brain, the pituitary gland and the adrenal gland. This is called the hypothalamic–pituitary–adrenal axis. When cortisol levels in the blood are low, a group of cells in a region of the brain called the hypothalamus releases corticotrophin-releasing hormone, which causes the pituitary gland to secrete another hormone, adrenocorticotropic hormone, into the bloodstream. High levels of adrenocorticotropic hormone are detected in the adrenal glands and stimulate the secretion of cortisol, causing blood levels of cortisol to rise. As the cortisol levels rise, they start to block the release of corticotrophin-releasing hormone from the hypothalamus and adrenocorticotropic hormone from the pituitary. As a result the adrenocorticotropic hormone levels start to drop, which then leads to a drop in cortisol levels. This is called a negative feedback loop.
What does it mean if your Allo-Tetrahydrocortisol result is too high?
Cortisol is metabolized by 5a/5b reductase (and 3a-HSD) to a/b-THF & THE for excretion. This process is particularly increased in obesity, high insulin and hyperthyroid.
All Your Lab Results.
One Simple Dashboard.
Import, Track, and Share Your Lab Results Easily
Import, Track, and Share Your Lab Results
Import lab results from multiple providers, track changes over time, customize your reference ranges, and get clear explanations for each result. Everything is stored securely, exportable in one organized file, and shareable with your doctor—or anyone you choose.
Cancel or upgrade anytime
What does it mean if your Allo-Tetrahydrocortisol result is too low?
Cortisol is metabolized by 5a/5b reductase (and 3a-HSD) to a/b-THF & THE for excretion. This process is slowed in cases of hypothyroidism, anorexia or poor liver function.
Laboratories
Bring All Your Lab Results Together — In One Place
We accept reports from any lab, so you can easily collect and organize all your health information in one secure spot.
Pricing Table
Gather Your Lab History — and Finally Make Sense of It
Finally, Your Lab Results Organized and Clear
Personal plans
$79/ year
Advanced Plan
Access your lab reports, explanations, and tracking tools.
- Import lab results from any provider
- Track all results with visual tools
- Customize your reference ranges
- Export your full lab history anytime
- Share results securely with anyone
- Receive 5 reports entered for you
- Cancel or upgrade anytime
$250/ once
Unlimited Account
Pay once, access everything—no monthly fees, no limits.
- Import lab results from any provider
- Track all results with visual tools
- Customize your reference ranges
- Export your full lab history anytime
- Share results securely with anyone
- Receive 10 reports entered for you
- No subscriptions. No extra fees.
$45/ month
Pro Monthly
Designed for professionals managing their clients' lab reports
- Import lab results from any provider
- Track lab results for multiple clients
- Customize reference ranges per client
- Export lab histories and reports
- Begin with first report entered by us
- Cancel or upgrade anytime
About membership
What's included in a Healthmatters membership
Import Lab Results from Any Source
See Your Health Timeline
Understand What Your Results Mean
Visualize Your Results
Data Entry Service for Your Reports
Securely Share With Anyone You Trust
Let Your Lab Results Tell the Full Story
Once your results are in one place, see the bigger picture — track trends over time, compare data side by side, export your full history, and share securely with anyone you trust.
Bring all your results together to compare, track progress, export your history, and share securely.
What Healthmatters Members Are Saying
Frequently asked questions
Healthmatters is a personal health dashboard that helps you organize and understand your lab results. It collects and displays your medical test data from any lab in one secure, easy-to-use platform.
- Individuals who want to track and understand their health over time.
- Health professionals, such as doctors, nutritionists, and wellness coaches, need to manage and interpret lab data for their clients.
With a Healthmatters account, you can:
- Upload lab reports from any lab
- View your data in interactive graphs, tables, and timelines
- Track trends and monitor changes over time
- Customize your reference ranges
- Export and share your full lab history
- Access your results anytime, from any device
Professionals can also analyze client data more efficiently and save time managing lab reports.
Healthmatters.io personal account provides in-depth research on 10000+ biomarkers, including information and suggestions for test panels such as, but not limited to:
- The GI Effects® Comprehensive Stool Profile,
- GI-MAP,
- The NutrEval FMV®,
- The ION Profile,
- Amino Acids Profile,
- Dried Urine Test for Comprehensive Hormones (DUTCH),
- Organic Acids Test,
- Organix Comprehensive Profile,
- Toxic Metals,
- Complete Blood Count (CBC),
- Metabolic panel,
- Thyroid panel,
- Lipid Panel,
- Urinalysis,
- And many, many more.
You can combine all test reports inside your Healthmatters account and keep them in one place. It gives you an excellent overview of all your health data. Once you retest, you can add new results and compare them.
If you are still determining whether Healthmatters support your lab results, the rule is that if you can test it, you can upload it to Healthmatters.
We implement proven measures to keep your data safe.
At HealthMatters, we're committed to maintaining the security and confidentiality of your personal information. We've put industry-leading security standards in place to help protect against the loss, misuse, or alteration of the information under our control. We use procedural, physical, and electronic security methods designed to prevent unauthorized people from getting access to this information. Our internal code of conduct adds additional privacy protection. All data is backed up multiple times a day and encrypted using SSL certificates. See our Privacy Policy for more details.