Trichothecene Group
Produced by at least five types of fungi, this group of mycotoxins includes around 170 types of toxins. Some types contaminate plants, including grains, fruits, and vegetables. Others thrive in soil and decaying organic material. Several types of trichothecenes are infamously produced by Stachybotrys chartarum, also called black mold.
- Satratoxin G – Though all of the trichothecenes are highly toxic, tests have determined that Satratoxin G is the most dangerous to people and animals. The black mold Stachybotrys chartarum produces several types of trichothecenes, but produces Satratoxin G and H in greater amounts than other toxins.
- Satratoxin H – Not all strains of black mold (Stachybotrys chartarum) produce mycotoxins, but the ones that do typically produce more than one kind, including Satratoxin H. The mold is found on some agricultural materials, and in damp or water-damaged environments. Evidence suggests the mold is a serious problem in North America.
- Isosatratoxin F– Another trichothecene mycotoxin produced by Stachybotrys chartarum, Isosatratoxin F is one of the contributors to “sick building syndrome,” where health issues of building occupants are directly tied to time spent in mold-infected buildings. A 1984 World Health Organization Committee report suggested that up to 30 percent of new and remodeled buildings are possible causes of health problems due to poor air quality.
- Roridin A – Like other macrocyclic trichothecenes, Roridin A is produced by mold, and is associated with a number of acute and chronic respiratory tract health problems. Experiments have shown that exposure to Roridin A can cause nasal inflammation, excess mucus secretion, and damage to the olfactory system.
- Roridin E – Like many of the mycotoxins, Roridin E can cause the above respiratory and olfactory issues, and may also disrupt the synthesis of DNA, RNA, and protein, which can impact every cell in the body. Roridin E grows in moist indoor environments, but can also be produced by a soil fungus that contaminates foodstuffs, and is passed down the food chain to animals and then to humans.
- Roridin H – Affecting human and animal health in much the same ways as other trichothecene mycotoxins, Roridin H is produced by mold, especially Stachybotrys chartarum, which grows well on many building materials subject to damp conditions, including wood-fiber, bards, ceiling tiles, water-damaged gypsum board, and air conditioning ducts.
- Roridin L-2 – This mycotoxin is also produced by molds, including black mold. Interestingly, environmental tests cannot always detect Stachybotrys, since its spores are large and heavy and not easily dispersed into the air. Unfortunately, mycotoxin molecules, including the very toxic Rorodin l2, are light and easily airborne and inhaled by occupants of an infected building.
- Verrucarin J – Yet another mycotoxin produced by Stachybotrys chartarum,Verrucarin molecules are small enough to be airborne and easily inhaled. Experiments have determined that inhalation is the most dangerous form of exposure, but trichothecene mycotoxins can easily cross cell membranes, which means they can also be absorbed through the mouth and even the skin.
- Verrucarin A – One of the most toxic trichothecenes, Verrucarin A is also produced by fungi and mold. Like Roridin E, Verrucarin A is found not only in molds in damp environments but also in molds that occur naturally on a variety of crops intended for human and animal consumption.
------------------------------
The trichothecenes are remarkably stable under different environmental conditions, including typical cooking temperatures. They consist of what is defined as mononocyclic (T-2 toxin) or macrocyclic (Satratoxin).
T-2 toxin is produced by several Fusarium spp. It is a contaminant of various cereal grains and is thought to be the major component of Yellow Rain of the Viet Nam era.
The macrocyclic trichothecenes are produced by Stachybotrys chartarum (Satratoxins H and G, Roridin E, and Verrucarin J).
The trichothecenes are nonvolatile with a molecular weight between 250-500. They are relatively insoluble in water, but highly soluble in a variety of solvents (acetone, ethyl acetate, DMSO, ethanol, methanol and propylene glycol).
Purified trichothecenes have a low vapor pressure and form a yellow color in solvents as well as a crystal. They are relatively stable compounds as noted above. They are not inactivated by autoclaving but require temperatures of 900 F 10 minutes or 500 F for 30 minutes for inactivation.
General Comments on the Toxicology of Trichothecenes:
All trichothecenes are considered mycotoxins. They are toxic to humans, other mammals (domestic and research), birds, invertebrates, plants and eukaryote cells, in general. The acute toxicity of (LD50) to various species of animals has been reviewed by Wannenmacher and Wiener, 1997. They are more toxic via the lungs vs other means of exposure.
Acute Toxicity:
Acute effects of oral, parental, dermal or aerosol exposure to trichothecenes produce a variety of effects: hematopoietic, radio mimetic, gastric an intestinal lesions and immune-suppression; neurotoxicity (nausea, anorexia, lassitude), suppression of reproduction function and vascular effects leading to hypotension. These effects occur because trichothecenes are potent inhibitors of protein synthesis. They bind to ribosomes, inhibiting protein and, subsequently, RNA and DNA synthesis.
Rapidly proliferating tissues (intestines and bone marrow) are most adversely affected. Furthermore, they are lipid soluble, crossing cell membranes, causing lipid peroxidation with mitochondrial and cellular membrane damage.
Trichothecenes bind to subcellular structures, disrupting and altering the morphology of mitochondria, rough endoplasmic reticulum, myofibers and membranes.They inhibit succinic dehydrogenase activity with effects on cellular energetics with decreases in succinate, pyruvate and malate oxidation and inhibition of mitochondrial protein synthesis.
Finally, they cause increased cell death (apoptosis) in a variety of cell types via mitochondrial and non-mitochondrial mechanisms.
It is suspected that from 1974 to 1981, trichothecenes were used in Afghanistan, Laos and Cambodia via aerial application (“yellow rain”) . Early symptoms in “yellow rain” victims were severe nausea, vomiting, burning superficial skin discomfort, lethargy, weakness, dizziness and loss of coordination.
Within minutes to hours, diarrhea (first watery brown and later grossly bloody) occurred. From 3 to 12 hours, symptoms included dyspnea, coughing, sore mouth, bleeding gums, epistaxis, hematemesis, abdominal pain and central chest pain. Exposed skin could become red, tender, swollen, painful or pruritic. Small or large vesicles and bullae were observed as well as petechiae, ecchymosis and necrosis of the skin. Marked anorexia and dehydration were frequent.
Upper respiratory symptoms included the following: nose (itching, pain rhinorrhea, epistaxis), throat (sore/pain, aphona, voice changes) and tracheobronchial tree (cough, hemoptysis, dyspnea, deep chest pain, chest pressure).
Agricultural workers exposed to hay or hay dust contaminated with Trichothecenes also developed similar signs and symptoms of upper respiratory injury.
Chronic Toxicological Effects:
Chronic exposure to trichothecenes causes Alimentary Toxic Aleukia (ATA) in humans, mycotoxicosis in domestic animals and adverse outcomes in individuals given trichothecenes intravenously as a chemotherapy for colon adenocarcinoma.
ATA occurred in Russia during and prior to WW II when peasants consumed field grains contaminated with trichothecene mycotoxins infested with Fusarium. The clinical course of the disease occurred in four stages.
Stage one was characterized by inflammation of the gastrointestinal tract mucosa, vomiting, diarrhea, abdominal pain, excessive salivation, headache, dizziness, weakness, fatigue, tachycardia, fever and sweating.
Progression occurs to the second stage (also called leukopenic or latent stage). Leukopenia, granulopenia and progressive lymphocytosis characterize this stage. If ingestion of the contaminated grain is not stopped or if a large dose is taken in, the third stage ensues.
The third stage is characterized by a bright red or dark cherry-red, petechial rash on the chest and other areas of the body. These are at first localized and then spread, becoming more numerous. In the most severe cases, intensive ulceration and gangrenous conditions develop in the larynx. This can lead to aphonia and death by strangulation. Concomitantly, hemorrhagic diathesis occurs in the nasal, oral, gastric and intestinal mucosa.
The fourth stage (recovery stage) begins when the necrotic lesions of the body begin to heal and the body temperature drops. The affected individuals are susceptible to secondary infections, including pneumonia. Convalescence takes several weeks and the bone marrow approaches normality by two months.
Chemotherapy:
The trichothecenes inhibit cell division via cell death. This was used as a basis for a chemotherapy drug trial. Cancer patients were given daily doses (0.077 mg/kg) of DAS (anguidine) for 5 days. They developed signs and symptoms of toxicity which included nausea, vomiting, diarrhea, burning erythema, confusion, ataxia, chills, fever, hypotension and hair loss. The anti-tumor activity was either absent or minimal and the drug trials were stopped because of patient intolerance.
Metabolism:
Trichothecenes, unlike other mycotoxins, do not require metabolic activation to exert their toxic effects. Direct dermal application leads to immediate skin irritation.
Trichothecenes directly act with cellular organelles and structures causing inhibition of protein, RNA and DNA synthesis, disaggregation of polyribosomes and rough endoplasmic reticulum, inhibition of mitochondrial functions and cause cell death (apoptosis).
Trichothecenes are lipophilic and are easily absorbed through the skin, respiratory and intestinal tracts. A single oral dose peaks in the blood at one hour. Inhaled median lethal dose is equal to or less than a systemic dose.
Tissue distribution studies show that the liver is the major organ of metabolism of trichothecenes.
Radioactivity from labeled mycotoxins following different routes of administration (oral, intra muscular, IV, dermal) appear in the bile, liver and gastrointestinal tract with metabolites and glucuronide conjugates appearing in the urine and feces.
Trichothecenes are metabolized via deacetylation and de-expoxidation (hyrdrolysis). The metabolic fate of T-2 toxin has been the most thoroughly investigated of all of the trichothecenes. It is metabolized by rat intestinal microflora in a variety of animals to de-epoxy products (DE HT-2 and DE TRIOL).
Also, DAS is bio-transformed by de-acetylation and de-epoxidation by intestinal microflora of cattle, swine and rats. A nonspecific carboxylesterase in the liver selectively hydrolyzes the C-4 acetyl group of T-2 toxin to form HT-2 toxin. The activity of this enzyme has also been detected in the brain, kidney, spleen, white blood cells and erythrocytes.
Also, a hepatic cytochrome P-450 in mice and monkeys has been shown to catalyze the hydrolysis of the C-3′ and C-4′ positions of the isovaleryl side chain of T-2 and HT-2 toxins.
Finally, it is of interest to note that chronic exposure to 6-12 ppm of trichothecenes in the diet causes an increase in drug metabolizing enzymes, while acute low doses produces a decrease in these microsomal enzymes.
References:
Joerg Stroka, Carlos Goncalves -- Mycotoxins in Food and Feed: An Overview [L]
Trichothecene Information, RealTime Laboratories [L]
Trichothecene, TCT affect cell division in the body, where cells are actively dividing such as the skin, gastrointestinal tract, lymphoid, and erythroid cells. From: Food Safety and Human Health, 2019
What does it mean if your Trichothecene Group result is too high?
What Are Trichothecenes?
Trichothecenes are a group of highly stable and toxic mycotoxins produced by certain fungi, most notably species from the genera Fusarium, Stachybotrys, and Myrothecium. Scientists have identified more than 170 different trichothecene compounds. These toxins can contaminate:
-
Grains, fruits, and vegetables
-
Soil and decaying plant material
-
Indoor environments, especially water-damaged buildings with mold (such as Stachybotrys chartarum, or “black mold”)
Trichothecenes are particularly concerning because they disrupt protein synthesis, damage cells, and trigger oxidative stress in the body.
What Does a High Trichothecenes Level Mean?
Elevated trichothecene levels usually indicate:
-
Recent or ongoing exposure to moldy environments, especially those with black mold
-
Consumption of contaminated foods (such as improperly stored grains, corn, or legumes)
-
Rarely, internal colonization by toxin-producing fungi
High levels of trichothecenes may be linked to:
-
Suppressed immune function
-
Neurological symptoms (headaches, confusion, fatigue)
-
Digestive problems
-
Hormonal imbalances or inflammation
-
Respiratory issues, if toxins are inhaled
How Do Trichothecenes Harm the Body?
Trichothecenes generate reactive oxygen species (ROS), which can:
-
Damage DNA and cell membranes
-
Impair mitochondrial function
-
Trigger cell death (apoptosis)
-
Disrupt key cellular signaling pathways (such as MAPK and NF-κB)
-
Weaken immune defenses and promote chronic inflammation
What Can You Do If Your Trichothecenes Level Is High?
1. Reduce Exposure
-
Identify and eliminate sources of mold at home or work, especially in areas with water damage or visible mold.
-
Avoid foods at high risk for mold contamination, including old grains, corn, legumes, and nuts.
-
Consider professional environmental testing or remediation if black mold is suspected.
2. Support Detoxification and Recovery
While there is no specific antidote for trichothecene exposure, certain nutrients and antioxidants may help the body cope with oxidative stress:
General Antioxidants:
-
Vitamin A
-
Vitamin C
-
Vitamin E
Targeted Antioxidants:
-
Quercetin (may reduce cell damage from some trichothecenes)
-
Selenium (protects cell membranes)
-
N-Acetylcysteine (NAC; reduces oxidative stress in animal studies)
Plant-Based Antioxidants:
-
EGCG (from green tea)
-
Quince seed mucilage
-
Polyphenol-rich foods (berries, leafy greens, turmeric)
These compounds may help by:
-
Blocking oxidative stress and inflammation
-
Protecting mitochondria
-
Supporting natural detoxification pathways
-
Reducing cell and DNA damage
3. Stay Hydrated and Support Your Liver
-
Drink plenty of water to help flush toxins from your system.
-
Eat liver-supporting foods such as cruciferous vegetables, garlic, and bitter greens.
When to Consult a Healthcare Provider
Seek medical advice—preferably from a practitioner experienced in environmental or functional medicine—if you:
-
Have persistently high trichothecene levels
-
Experience ongoing fatigue, immune problems, or unexplained symptoms
-
Suspect continued mold exposure at home, work, or school
-
Are pregnant, immunocompromised, or have a chronic illness
In summary:
Trichothecenes are potent toxins that can seriously impact your health, especially with ongoing exposure. Reducing contact with mold, supporting your body’s natural defenses, and seeking expert guidance are the best steps you can take if your levels are high.
All Your Lab Results.
One Simple Dashboard.
Import, Track, and Share Your Lab Results Easily
Import, Track, and Share Your Lab Results
Import lab results from multiple providers, track changes over time, customize your reference ranges, and get clear explanations for each result. Everything is stored securely, exportable in one organized file, and shareable with your doctor—or anyone you choose.
Cancel or upgrade anytime
Laboratories
Bring All Your Lab Results Together — In One Place
We accept reports from any lab, so you can easily collect and organize all your health information in one secure spot.
Pricing Table
Gather Your Lab History — and Finally Make Sense of It
Finally, Your Lab Results Organized and Clear
Personal plans
$79/ year
Advanced Plan
Access your lab reports, explanations, and tracking tools.
- Import lab results from any provider
- Track all results with visual tools
- Customize your reference ranges
- Export your full lab history anytime
- Share results securely with anyone
- Receive 5 reports entered for you
- Cancel or upgrade anytime
$250/ once
Unlimited Account
Pay once, access everything—no monthly fees, no limits.
- Import lab results from any provider
- Track all results with visual tools
- Customize your reference ranges
- Export your full lab history anytime
- Share results securely with anyone
- Receive 10 reports entered for you
- No subscriptions. No extra fees.
$45/ month
Pro Monthly
Designed for professionals managing their clients' lab reports
- Import lab results from any provider
- Track lab results for multiple clients
- Customize reference ranges per client
- Export lab histories and reports
- Begin with first report entered by us
- Cancel or upgrade anytime
About membership
What's included in a Healthmatters membership
Import Lab Results from Any Source
See Your Health Timeline
Understand What Your Results Mean
Visualize Your Results
Data Entry Service for Your Reports
Securely Share With Anyone You Trust
Let Your Lab Results Tell the Full Story
Once your results are in one place, see the bigger picture — track trends over time, compare data side by side, export your full history, and share securely with anyone you trust.
Bring all your results together to compare, track progress, export your history, and share securely.
What Healthmatters Members Are Saying
Frequently asked questions
Healthmatters is a personal health dashboard that helps you organize and understand your lab results. It collects and displays your medical test data from any lab in one secure, easy-to-use platform.
- Individuals who want to track and understand their health over time.
- Health professionals, such as doctors, nutritionists, and wellness coaches, need to manage and interpret lab data for their clients.
With a Healthmatters account, you can:
- Upload lab reports from any lab
- View your data in interactive graphs, tables, and timelines
- Track trends and monitor changes over time
- Customize your reference ranges
- Export and share your full lab history
- Access your results anytime, from any device
Professionals can also analyze client data more efficiently and save time managing lab reports.
Healthmatters.io personal account provides in-depth research on 10000+ biomarkers, including information and suggestions for test panels such as, but not limited to:
- The GI Effects® Comprehensive Stool Profile,
- GI-MAP,
- The NutrEval FMV®,
- The ION Profile,
- Amino Acids Profile,
- Dried Urine Test for Comprehensive Hormones (DUTCH),
- Organic Acids Test,
- Organix Comprehensive Profile,
- Toxic Metals,
- Complete Blood Count (CBC),
- Metabolic panel,
- Thyroid panel,
- Lipid Panel,
- Urinalysis,
- And many, many more.
You can combine all test reports inside your Healthmatters account and keep them in one place. It gives you an excellent overview of all your health data. Once you retest, you can add new results and compare them.
If you are still determining whether Healthmatters support your lab results, the rule is that if you can test it, you can upload it to Healthmatters.
We implement proven measures to keep your data safe.
At HealthMatters, we're committed to maintaining the security and confidentiality of your personal information. We've put industry-leading security standards in place to help protect against the loss, misuse, or alteration of the information under our control. We use procedural, physical, and electronic security methods designed to prevent unauthorized people from getting access to this information. Our internal code of conduct adds additional privacy protection. All data is backed up multiple times a day and encrypted using SSL certificates. See our Privacy Policy for more details.