Explore our database of over 4000 laboratory markers.
Search and Understand 4000+ Biomarkers
Reference range: Negative, Positive
The SEMI-QUANT RF biomarker is a powerful tool in autoimmune disease management. Whether for early detection of Rheumatoid Arthritis or ongoing monitoring of disease progression, its ability to provide a detailed measurement of RF levels makes it indispensable in clinical settings. For anyone facing autoimmune disorders, knowing your SEMI-QUANT RF levels can guide more personalized and effective care.
Optimal range: 13 - 20 qmol/ejac.
percent able to move as well as how vigorously and straight the sperm move
Optimal range: 98.4 - 1052.8 umol/g Cr
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 2.1 - 7 qmol/dL
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 12.2 - 25.2 ug/mg CR
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 140 - 568 qmol/24 hours
LEARN MOREOptimal range: 43.8 - 94.3 umol/L
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 30 - 100 %
Serine is used to manufacture proteins, energy, cell membrane structure and synthesis of other cell components (DNA and RNA). Serine is a dispensable amino acid obtained from the diet and synthesized from other amino acids and metabolites of glucose.
Serine participates in protein synthesis, energy production, phospholipid synthesis (phosphatidyl serine and ethanolamine) and one-carbon unit metabolism (necessary for DNA and RNA synthesis). Quantitatively, serine supplies more one-carbon units than any other nutrient. Serine is an attachment point for carbohydrates on protein chains.
Repletion Information: Since serine is a dispensable amino acid, no dietary RDA exists. Serine is present in foods that are rich in protein. Doses of 1-2 grams daily of pure serine appear safe.
Optimal range: 91 - 161 micromol/L
Serine is a nonessential amino acid used in protein biosynthesis. In the folate cycle, glycine and serine are interconverted by the enzyme serine hydroxymethyltransferase (SHMT). Glycine accepts a methyl donor from 5-10 MTHF and becomes serine; therefore, serine is methylated glycine. [L] These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. [L]
Optimal range: 135 - 540 qM/g creatinine
LEARN MOREOptimal range: 48.7 - 145.2 umol/L
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 6.3 - 554.2 nmol/mg Creatinine
LEARN MOREOptimal range: 12 - 82 mmol/mol creatinine
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 2.1 - 7 Units
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats.
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons.
In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 24 - 140 micromol/g creatinine
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 65 - 138 umol/L
Serine is a nonessential amino acid used in protein biosynthesis and can be derived from four possible sources: dietary intake, degradation of protein and phospholipids, biosynthesis from glycolysis intermediate 3-phosphoglycerate, or from glycine.
Serine is found in soybeans, nuts, eggs, lentils, shellfish, and meats. Serine is used to synthesize ethanolamine and choline for phospholipids. Serine is essential for the synthesis of sphingolipids and phosphatidylserine in CNS neurons. In the folate cycle, glycine and serine are interconverted. These methyltransferase reactions and interconversions are readily reversible depending on the needs of the folate cycle. Dietary serine is not fully converted to glycine; therefore, serine supplementation has little value, though is not harmful.
Optimal range: 60 - 172 µmol/L , 6 - 17.2 µmol/dL
Serine can be used as an energy source. Formed from threonine and phosphoserine (requiring B6, manganese, and magnesium), serine is necessary for the biosynthesis of acetylcholine, a neurotransmitter used in memory function.
Optimal range: 54.2 - 207.4 nmol/ML
- Plasma serine was found higher in depression, and psychoses including schizophrenia.
- Methionine supplementation significantly increased plasma serine.
- Serine is involved in cysteine and methionine metabolism.
- Blood serine was lower in patients with hypertension.
- Blood serine was lower in patients with greater liver fat fractions, higher alanine transaminase (ALT) and triglyceride, in patients with fatty liver disease.